Development and evaluation of an active framework for undergraduate biology instruction Thesis uri icon



  • Thesis (Ph.D., Curriculum & Instruction) -- University of Idaho, 2015 | The practice of science education in American colleges and universities is changing and the role of faculty is changing as well. There is momentum in higher education to transform our instruction and do a better job at supporting more students’ success in science and engineering programs. New teaching approaches are transforming undergraduate science instruction and new research demonstrates that these new approaches are more engaging for students, result in greater achievement, and create more positive attitudes toward science careers. Additionally, teaching scholars have described a paradigm shift toward placing the burden of content coverage on students which allows more time for in-class activities such as discussion and problem solving. Teaching faculty have been asked to redesign their courses and rebrand themselves as facilitators of student learning, rather than purveyors of information, to improve student engagement, achievement, and attitudes. This dissertation is a critical evaluation of both the assumption that active learning improves student achievement and knowledge retention and my own assumptions regarding science education research and my students’ resiliency. This dissertation is a collection of research articles, published or in preparation, presenting the chronological development (Chapters 2 and 3) and evaluation (Chapters 4 and 5) of an active instructional model for undergraduate biology instruction. Chapters 1 and 6.provide a broad introduction and summary, respectively. Chapter 2 is an exploration of student engagement through interviews with a variety of students. From these interviews I identified several themes that students felt were important, and science instructors need to address, including the place where learning happens and strategies for better engaging students. Chapter 3 presents a review of the science education literature broadly and more focused review on the how students learn and how faculty teach. Consistent with what my student interviews suggested, I found that engaging students by way of innovative instructional approaches is a major theme in science education. I conclude by arguing for the development of collaborative learning communities and the use of cognitive apprenticeships in science classrooms. In Chapter 4 I presented the development and initial evaluation of an instructional framework for undergraduate biology classrooms. I found that student satisfaction as measured by end-of-course evaluations increased compared to my previous instructional model. I concluded that the instructional framework was efficacious and proceeded to evaluate the model in the context of knowledge acquisition and retention. Chapter 5 is the culmination of the work I conducted for the research presented in Chapters 2 through 4. In Chapter 5 I formally test the hypotheses that my instructional framework presented in Chapter 4 results in no greater knowledge acquisition or retention compared to a more traditional lecture model of instruction. I failed to reject these hypotheses which runs contrary to much published literature; the implications of my findings are discussed.

publication date

  • June 1, 2015